
R E S E A R CH PA P E R

Ecological drivers of spatial community dissimilarity, species
replacement and species nestedness across temperate forests

Xugao Wang1 | Thorsten Wiegand2,3 | Kristina J. Anderson-Teixeira4,5 |

Norman A. Bourg6 | Zhanqing Hao1 | Robert Howe7 | Guangze Jin8 |

David A. Orwig9 | Marko J. Spasojevic10 | Shunzhong Wang11 | Amy Wolf7 |

Jonathan A. Myers12

1Key Laboratory of Forest Ecology and

Management, Institute of Applied Ecology,

Chinese Academy of Sciences, Shenyang,

P. R. China

2Department of Ecological Modelling,

Helmholtz Centre for Environmental

Research-UFZ, Leipzig, Germany

3German Centre for Integrative Biodiversity

Research (iDiv) Halle-Jena-Leipzig, Leipzig,

Germany

4Conservation Ecology Center, Smithsonian

Conservation Biology Institute, National

Zoological Park, Front Royal, Virginia

5Center for Tropical Forest Science–Forest

Global Earth Observatory, Smithsonian

Tropical Research Institute, Panama,

Republic of Panama

6U.S. Geological Survey, National Research

Program – Eastern Branch, Reston, Virginia

7Department of Natural and Applied

Sciences, University of Wisconsin-Green

Bay, Green Bay, Wisconsin

8Center for Ecological Research, Northeast

Forestry University, Harbin, China

9Harvard Forest, Harvard University,

Petersham, Massachusetts

10Department of Biology, University of

California Riverside, Riverside, California

11State Key Laboratory of Vegetation and

Environmental Change, Institute of Botany,

Chinese Academy of Sciences, Xiangshan,

Beijing, China

12Department of Biology & Tyson Research

Center, Washington University in St Louis,

St Louis, Missouri

Correspondence

Xugao Wang, Key Laboratory of Forest

Ecology and Management, Institute of

Applied Ecology, Chinese Academy of

Sciences, Shenyang 110016, P. R. China.

Email: wxg_7980@163.com

Abstract

Aims: Patterns of spatial community dissimilarity have inspired a large body of theory in ecology

and biogeography. Yet key gaps remain in our understanding of the local-scale ecological processes

underlying species replacement and species nestedness, the two fundamental components of spa-

tial community dissimilarity. Here, we examined the relative influence of dispersal limitation,

habitat filtering and interspecific species interactions on local-scale patterns of the replacement

and nestedness components in eight stem-mapped temperate forest mega-plots at different

ontogenetic stages (large versus small trees).

Location: Eight large (20–35 ha), fully mapped temperate forest plots in northern China and

northern U.S.A.

Time period: 2004–2016.

Major taxa studied: Woody plants.

Methods: We combined decomposition of community dissimilarity (based on the Ru�zička

index) and spatial point-pattern analysis to compare the spatial (i.e., distance-dependent)

replacement and nestedness components of each plot with that expected under five

spatially explicit null models representing different hypotheses on community-assembly

mechanisms.

Results: Our analyses revealed complex results. In all eight forests, spatial community dissimi-

larity was best explained by species replacement among local tree assemblages and by a null

model based on dispersal limitation. In contrast, spatial nestedness for large and small trees

was best explained by random placement and habitat filtering, respectively, in addition to

dispersal limitation. However, interspecific interactions did not contribute to local replacement

and nestedness.

Main conclusions: Species replacement is the predominant process accounting for spatial commu-

nity dissimilarity in these temperate forests and caused largely by local-scale species clustering

associated with dispersal limitation. Nestedness, in contrast, is less prevalent and primarily associ-

ated with larger variation in local species richness as caused by spatial richness gradients or

‘hotspots’ of local species richness. The novel use of replacement and nestedness measures in

point pattern analysis is a promising approach to assess local-scale biodiversity patterns and to

explore their causes.
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1 | INTRODUCTION

Disentangling the relative importance of mechanisms that create spatial

variation in community composition is a central challenge in ecology

and biogeography (Anderson et al., 2011; Whittaker, 1960). For exam-

ple, increases in community dissimilarity (beta diversity) with spatial dis-

tance have been extensively described for diverse organisms and

comprise one of the most widely recognized and important spatial

biodiversity patterns (Nekola & White, 1999; Soininen, McDonald, &

Hillebrand, 2007). This generalization, also called distance-decay of

community similarity, is widely used in community ecology to under-

stand processes of community assembly (Condit et al., 2002; Morlon

et al., 2008; Wang et al., 2011). At biogeographical scales, patterns of

spatial species turnover provide important insights into historical and

regional processes underlying the composition and dynamics of

regional biotas (Nekola & White, 1999; Qian & Ricklefs, 2012;

Tuomisto, Ruokolainen, & Yli-Halla, 2003).

The processes that determine increasing community dissimilarity

with distance (hereafter ‘spatial community dissimilarity’) have impor-

tant implications for community assembly and the maintenance of bio-

diversity in ecological communities. At local scales, spatial community

dissimilarity is driven by several non-mutually exclusive processes,

including dispersal limitation, habitat filtering and species interactions

(Morlon et al., 2008; Wang et al., 2011, 2015). Dispersal limitation (e.g.,

local seed dispersal) is predicted to increase spatial community dissimi-

larity by increasing spatial aggregation of conspecific individuals. In

contrast, increased dispersal should decrease spatial community dissim-

ilarity and homogenize community composition (Catano, Dickson,

Myers, & Rejmanek, 2017; Hubbell, 2001). Likewise, habitat filtering

(where species arrive at a site but fail to persist owing to the abiotic

conditions; Kraft et al., 2015) can increase spatial community dissimilar-

ities by increasing species sorting across abiotic gradients (Chase &

Myers, 2011). Interspecific species interactions, such as competition or

predation, can counteract positive effects of dispersal on diversity and

can homogenize community composition by removing competitively

inferior species or species lacking enemy-tolerant traits (Kneitel &

Miller, 2003; Mouquet & Loreau, 2003). Habitat filtering, dispersal limi-

tation and interspecific interactions may also interact in complex ways

to influence spatial community dissimilarity. For example, whereas

increased dispersal may homogenize community composition under

weak habitat filtering, it may increase community dissimilarity under

strong habitat filtering (Myers & LaManna, 2016). Thus, patterns of

spatial community dissimilarity may reflect the outcome and interplay

of multiple community assembly processes.

Given the complexity of potential interactions among processes, it

is not surprising that the relative importance of processes in driving

patterns of spatial community dissimilarity remains largely unresolved

(Svenning, Fløjgaard, & Baselga, 2011). However, these difficulties may

also be grounded in an overly simplistic characterization of community

dissimilarity. For example, researchers have recognized for some time

that the compositional dissimilarity of two local communities may

reflect two different phenomena: spatial species turnover (also known

as species replacement) and nestedness (Baselga, 2010; Baselga &

Leprieur, 2015; Legendre, 2014; Podani & Schmera, 2011). At one

extreme (perfect species replacement), local communities contain the

same number of species, but no species are shared among them. In this

case, their dissimilarity is purely driven by species replacement. At the

other extreme (perfect nestedness), the species composition of one

local community is a completely nested subset of the other. In this

case, the replacement component is zero, and the dissimilarity is

entirely driven by species loss that causes nestedness. Therefore,

nestedness and replacement must be disentangled at different spatial

scales in order to identify the underlying, possibly antithetic, processes

responsible for observed patterns of community dissimilarity (Baselga,

2010).

Species nestedness and replacement patterns have been attributed

to various processes of community assembly. Previous macroecological

studies showed that the nestedness component was more important in

areas affected by recent glaciations (e.g., Baselga, 2010; Dobrovolski,

Melo, Cassemiro, & Diniz-Filho, 2012; Svenning et al., 2011). At more

local scales, nestedness patterns can emerge from habitat filtering

across environmental gradients (Greve, Gremmen, Gaston, & Chown,
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2005), where species that occur in harsh environments are a nested

subset of species that occur in more benign environments (Chase,

2007). In contrast, species-replacement patterns at local scales are

expected from neutral dynamics under dispersal limitation, ecological

drift, high levels of speciation and isolation of local communities, or

niche selection where different species occur under different environ-

mental conditions (e.g., habitat filtering). Studies partitioning commu-

nity dissimilarity into species replacement and nestedness components

have mainly been conducted at macroecological scales (e.g., Dobrovol-

ski et al., 2012; Svenning et al., 2011), but little is known about the

relative importance of processes that influence patterns of species

replacement and nestedness at local scales.

In this study, we examined the relative influence of dispersal

limitation, habitat filtering and interspecific species interactions on

local-scale patterns of spatial community dissimilarity and its species

replacement and nestedness components in eight stem-mapped tem-

perate forest mega-plots (20–35 ha) in the Smithsonian Forest Global

Earth Observatory (ForestGEO; Anderson-Teixeira et al., 2015; Condit,

1998). Four of the temperate forest plots are located in northern China,

and the other four plots in the northern U.S.A. The diversity of settings

and variation in species richness among the eight forest plots (Table 1)

allow us to explore the generality of the patterns and processes

revealed by our analyses across different types of temperate forests

that vary in their climate and evolutionary history. To test underlying

local mechanisms, we simulated spatially explicit ‘null communities’ that

maintain the observed richness and relative abundances of species in

each plot (i.e., we removed regional species-pool effects), but random-

ize tree locations within each plot following spatial point process

models that resemble different (null) hypotheses on the presence or

absence of dispersal limitation, habitat filtering and interspecific species

interactions (Wang et al., 2015; Wiegand & Moloney, 2014). We then

compared the simulated patterns with their observed counterparts

(Morlon et al., 2008; Shen et al., 2009; Wang et al., 2011; Wiegand &

Moloney, 2014). To explore the relative importance of these processes

at different ontogenetic stages, we conducted separate analyses for

large trees [tree diameter at 1.3 m aboveground (dbh)�10 cm] and

small trees (dbh<10 cm). We asked the following questions. (a) What

is the relative importance of species replacement and species nested-

ness in determining spatial community dissimilarity at different spatial

scales? (b) How do dispersal limitation, habitat filtering and interspecific

species interactions influence species replacement and nestedness, and

do these processes differ among ontogenetic stages? We describe spe-

cific hypotheses and predictions for each of these mechanisms below.

2 | MATERIALS AND METHODS

2.1 | Study sites: Temperate forest-dynamics plots in

northern China and northern U.S.A.

Eight large (20–35 ha) temperate forest-dynamics plots were used in

the present study (Table 1). Four plots are located in northern China

and four in the northern U.S.A. The plots range in latitude from 38.52

to 48.088 N. Total species richness among the plots ranges from 36 to T
A
B
L
E
1

C
ha

ra
ct
er
is
ti
cs

o
f
th
e
ei
gh

t
F
o
re
st

G
lo
ba

l
E
ar
th

O
bs
er
va
to
ry

(F
o
re
st
G
E
O
)
pl
o
ts

in
no

rt
he

rn
C
hi
na

an
d
no

rt
he

rn
U
.S
.A
.

P
lo
t

A
re
a
(h
a)

La
ti
tu
de

Lo
ng

it
ud

e
E
le
va

ti
o
n
(m

)
M
ea

n
te
m
pe

ra
tu
re

(8
C
)

M
ea

n
pr
ec

ip
it
at
io
n

(m
m
)

T
o
ta
l

sp
ec

ie
s

ri
ch

n
es
s

T
o
ta
l

n
u
m
b
er

o
f

in
d
iv
id
u
al
s

Sp
ec

ie
s

ri
ch

n
es
s,

la
rg
e

tr
ee

sa

T
o
ta
l

n
u
m
b
er

o
f
la
rg
e

tr
ee

s

Sp
ec

ie
s

ri
ch

n
es
s,

sm
al
l

tr
ee

sb

T
o
ta
l

n
u
m
b
er

o
f
sm

al
l

tr
ee

s

W
ab

ik
o
n,

U
.S
.A
.
(W

A
B
)

2
5
.2

4
5
.5
5

2
8
8
.7
9

4
8
8
–5

1
4

4
.2

7
4
8

3
6

4
8
,8
5
8

2
3

1
4
,0
2
1

3
3

3
4
,8
3
7

H
ar
va
rd

F
o
re
st
,
U
.S
.A
.
(H

F
)

3
5

4
2
.5
4

2
7
2
.1
8

3
4
0
–3

6
8

8
.8

1
,1
5
0

5
5

7
7
,5
3
6

3
4

2
3
,9
0
1

5
3

5
3
,6
3
5

Sm
it
hs
o
ni
an

C
o
ns
er
va
ti
o
n
B
io
lo
gy

In
st
it
ut
e,

U
.S
.A
.
(S
C
B
I)

2
5
.6

3
8
.8
9

2
7
8
.1
5

2
7
3
–3

3
8

1
2
.8

1
,0
2
9

6
1

2
9
,9
1
4

4
9

8
,2
6
9

5
3

2
1
,6
4
5

T
ys
o
n
R
es
ea

rc
h
C
en

te
r,
U
.S
.A
.
(T
R
C
)

2
0

3
8
.5
2

2
9
0
.5
6

1
7
2
–2

3
3

1
3
.6

9
9
2

4
6

3
7
,4
8
8

3
9

6
,5
2
1

4
2

3
0
,9
6
7

F
en

gl
in
,
C
hi
na

(F
L)

3
0

4
8
.0
8

1
2
9
.1
2

4
0
1
–4

9
2

2
0
.5

6
8
4

4
6

9
4
,9
1
2

2
5

1
1
,2
4
2

4
4

8
3
,6
7
0

C
ha

ng
ba

is
ha

n,
C
hi
na

(C
B
S)

2
5

4
2
.3
8

1
2
8
.0
8

7
9
2
–8

1
0

3
.6

7
0
0

5
1

3
4
,9
2
6

3
0

1
0
,3
2
9

4
8

2
4
,5
9
7

B
ai
he

,
C
hi
na

(B
H
)

2
4

4
2
.3
3

1
2
8
.0
1

7
8
1
–8

0
2

3
.6

7
0
0

6
3

6
5
,7
4
6

3
4

1
7
,1
9
7

6
0

4
8
,5
4
9

D
o
ng

lin
gs
ha

n,
C
hi
na

(D
LS

)
2
0

3
9
.9
6

1
1
5
.4
3

1
,2
9
0
–1

,5
0
9

4
.8

6
5
0

5
1

5
2
,6
8
2

3
6

9
,5
5
8

5
1

4
3
,1
2
4

a D
ia
m
et
er

at
br
ea

st
he

ig
ht

�
1
0
cm

.
b
D
ia
m
et
er

at
br
ea

st
he

ig
ht

<
1
0
cm

.

WANG ET AL. | 3



63 (Table 1). All free-standing woody stems (excluding lianas) with dbh

� 1 cm were mapped, tagged, measured and identified to species using

standardized ForestGEO protocols (Anderson-Teixeira et al., 2015;

Bourg, McShea, Thompson, McGarvey, & Shen, 2013; Condit, 1998).

2.2 | Partitioning community dissimilarity into

abundance-based species replacement and nestedness

For each forest plot, we were interested in the local-scale (< 250 m)

pattern of distance decay of community similarity and its components.

Therefore, we combined the analytical framework of decomposing

community dissimilarity into nestedness and replacement components

(Baselga, 2010, 2017; Legendre, 2014) with the distance-centred

framework of spatial point pattern analysis (Shen et al., 2009; Wang

et al., 2015; Wiegand & Moloney, 2014; Wiegand et al., 2017). To

obtain distance-dependent dissimilarity measures, we resampled the

data of the fully mapped plots with the spatial grain of 20 m 3 20 m

subplots. This grain is commonly used in the analysis of ForestGEO

plots, and it is also the typical size of patches used in forest gap

models (e.g., Fischer et al., 2016). The number of trees and species in

these subplots is large enough for meaningful analysis (Supporting

Information Table S1).

In a first step of the estimation of distance-dependent dissimilarity

measures, we randomly located within a given forest plot 500 pairs of

subplots that were distance r apart. For each subplot i, we then deter-

mined the abundance as,i of species s. Second, we followed Legendre

(2014) and Baselga (2017) and calculated the three abundance-based

dissimilarity indices TDi,j, Repli,j and Nesi,j for the 500 pairs of subplots i

and j (see Supporting Information Appendix S1 for detail). TDi,j is the

total dissimilarity in species abundances between subplot i and j as

measured by the Ru�zička index (an abundance-weighted Jaccard index),

Repli,j is the replacement component of TDi,j, and Nesi,j is the nestedness

component, with TDi,j5Repli,j1Nesi,j. In the third step, we took the

mean of TDi,j, Repli,j and TDi,j over the 500 pairs of plots that were dis-

tance r apart to obtain our final measures, mTD(r), mRepl(r) and mNes(r).

This procedure was repeated for all distances r of 21–250 m in steps

of 1 m. We used the 21–250 m distance range because subplots with

r�20 m show substantial spatial overlap, and because for distances

> 250 m focal subplots have only a few neighbour subplots at distance

r inside the plot (Wiegand & Moloney, 2014).

2.3 | Environmental variables

Two of our five null community models considered the impact of envi-

ronmental variables on species distribution. We followed an established

approach in point process theory and modelled the spatially variable

intensity function ki(x) at location x for each species i by the log-linear

regression model ki(x)5 exp[b01b1 v1(x) 1 . . . 1 bn vn(x)] with envi-

ronmental variable vi(x) and coefficients bi that were fitted to the data

using maximum likelihood estimation (Waagepetersen & Guan, 2009).

For species with < 20 individuals, we used the plot-scale density ki,

being the number of species divided by the area of the plot.

We followed Wang et al. (2011, 2015) and used six environmental

variables (elevation, slope, aspect, terrain convexity, topographic wet-

ness index and altitude above channels) with a spatial resolution of 5 m

3 5 m. Elevation, slope, aspect and terrain convexity are widely used

topographical variables. The other two indices, topographic wetness

index (TWI) and vertical distance to the channel network (Chn), are

used to compute topographical control on hydrological processes

(Kanagaraj, Wiegand, Comita, & Huth, 2011; Punchi-Manage et al.,

2013). TWI represents the ratio of the area upslope of each quadrat to

the local slope for that quadrat, which can capture important informa-

tion on wetness. To calculate TWI, we used Tarboton’s deterministic

infinity method, described by Tarboton (1997) and Sørensen, Zinko,

and Seibert (2006), implemented in the open-source software SAGA-

GIS (Conrad et al., 2015). The vertical distance from the channel net-

work (i.e., drainage lines of surface rainfall) was also calculated in

SAGA-GIS.

2.4 | Ecological processes and hypotheses

We generated five types of spatially explicit null communities

representing different hypotheses on the relative roles of dispersal

limitation, habitat filtering and interspecific species interactions in com-

munity assembly. They are based on explicit maps of the locations of

the individuals (instead of the number of individuals of species s in

site i), and this additional structural realism allows us to devise null

models with more direct biological interpretation. All null communities

conserved the species richness and relative abundances of species at

each plot and were assembled by independent superposition of the

distribution patterns of individual species simulated by specific point

process models. This corresponds to the assumption of no species

interactions (e.g., McGill, 2010; Wiegand et al., 2012). The algorithms

of the specific point process models have been described in detail by

Wiegand & Moloney (2014) and Wang et al. (2015). Here, we briefly

summarize the basic framework of these point process models used to

test the five hypotheses below.

2.4.1 | The random-placement hypothesis

This hypothesis assumes that all individuals in the study area are ran-

domly and independently distributed. It represents the extreme case of

communities without spatial structure that do not, therefore, show dis-

tance dependence in spatial community dissimilarity and its compo-

nents. To implement the random-placement hypothesis, we used for

each species i a homogeneous Poisson process model with the

observed intensity ki (Illian, Penttinen, Stoyan, & Stoyan, 2008) that

assigns each tree a random location within the given study area.

Significant deviations from this null model indicate the existence of

non-random spatial structures in spatial community dissimilarity,

species replacement and nestedness.

2.4.2 | The habitat-filtering hypothesis

This hypothesis assumes that the distribution of each species is only

driven by local habitat suitability, but all further mechanisms of species

patterning are removed. To test the habitat filtering hypothesis, we
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used for each species i an inhomogeneous Poisson process model

(Shen et al., 2009), where the habitat suitability at location x is repre-

sented by the intensity function ki(x) (see section 2.3 ‘Environmental

variables’ above). If a species did not show significant relationships with

environmental variables, we used the constant plot-scale density ki

instead of ki(x). The inhomogeneous Poisson process produces species

patterns where the local density of individuals is proportional to the

local habitat suitability given by ki(x), but no additional mechanisms of

species aggregation are considered. Significant deviations from this null

model indicate that mechanisms and processes beyond habitat filtering

are operating. However, departures may also be caused by missing

environmental variables or extinction–recolonization dynamics where

not all suitable areas are occupied by the species.

2.4.3 | The dispersal-limitation hypothesis

This hypothesis assumes that the community is assembled only by

the effects of intraspecific aggregation or inhibition mechanisms of

population dynamics (e.g., dispersal limitation or negative conspe-

cific density dependence) without consideration of the influences of

habitat filtering or interspecific species interactions. To implement

this hypothesis, we used a homogeneous nonparametric annealing

algorithm (Tscheschel & Stoyan, 2006; Wiegand, He, & Hubbell,

2013) that is able to create, for each species, null-distribution pat-

terns that closely match the spatial structure of the original pattern

as captured by summary functions, such as the pair correlation

function, the K-function and the kth nearest neighbour functions

(for detail, see Wiegand et al., 2013). Note that this homogeneous

algorithm does not preserve the spatial intensity function ki(x) of

species i, but it preserves the observed overall aggregation (that can

be co-determined by habitat filtering). Significant deviations from

this null model indicate that habitat filtering and/or interspecific

species interactions contribute to the observed patterns.

2.4.4 | The combined habitat and dispersal hypothesis

This hypothesis assumes that the community is driven by the joint

effects of habitat filtering and dispersal limitation. We created null

communities like those generated by the dispersal-limitation hypothe-

sis, but the relocation of individuals of species i was additionally con-

strained by the spatial intensity function ki(x) used in the habitat

filtering hypothesis (Wiegand et al., 2013). Significant deviations from

this null model may result from unmeasured environmental factors that

are ignored in the log-linear regression models and by interspecific spe-

cies interactions that are not considered (because the individual species

patterns are independently superimposed).

2.4.5 | The independent-placement hypothesis

This hypothesis tests for local interspecific interactions by randomizing

species independently of one another, while preserving the overall

intraspecific aggregation and the observed larger-scale distribution [i.e.,

the observed intensity function ki(x)]. Thus, individuals of different spe-

cies are placed at smaller scales without regard to each other (McGill,

2010). To test this hypothesis, we used the method of the combined

habitat and dispersal hypothesis, but a nonparametric kernel estimate

of ki(x) with bandwidth R (Wiegand et al., 2013) replaced the

parametric estimate. The nonparametric estimate basically smoothes

the observed distribution pattern and therefore faithfully reproduces

the observed larger-scale variation in local tree density. Significant

deviations from this null model can therefore happen only at distances

r smaller than the bandwidth R, and mainly as a result of local interspe-

cific species interactions (or imperfect pattern reconstructions or

small-scale edaphic factors). We used a bandwidth of R550 m, like

Wiegand, Gunatilleke, Gunatilleke, and Huth (2007) and Wang et al.

(2015) (see Supporting Information Appendix S2).

2.5 | Evaluating the fit of the different hypotheses

We calculated the scale-dependent dissimilarity summary functions Si(r)

[i.e., representing total dissimilarity mTD(r), species replacement

mRepl(r) or nestedness mNes(r)] for the null communities generated

by the five point process models in the same way as for the

observed data. To compare the observed summary functions S0(r)

(indicated by subscript i50) and that resulting from i51, . . ., 100

realizations of the null community models, we first calculated the

standardized effect sizes (SES), as follows:

SESiðrÞ5½SiðrÞ2 �SðrÞ�=rSðrÞ; (1)

where �SðrÞ and rS(r) are the mean and the SD of the summary func-

tions Si(r) of the 100 null community realizations, respectively. For a

given distance r, the null community model can then be accepted

with a ‘pointwise’ significance level of a if 2za< SES0(r)< za. For

a5 .05, we have za 5 1.96 (Wiegand, Grabarnik, & Stoyan, 2016).

That means that we test whether the observed summary function

S0(r) is located within the 2.5th and 97.5th percentiles of the corre-

sponding null model distributions [i.e., the pointwise simulation enve-

lopes S2ðrÞ5�SðrÞ2zarSðrÞ and S1ðrÞ5�SðrÞ1zarSðrÞ; black dashed

lines in Figure 1a]. The standardized effects sizes therefore transform

the original summary functions in a way that the resulting pointwise

simulation envelopes are constants –za and za (Figure 1b) (Wiegand

et al., 2016). The standardized effect size is a measure of fit that con-

siders the stochasticity of the null communities. If the stochasticity is

large, for example owing to small sample sizes, the observed commun-

ities may not be distinguishable from null communities.

To assess the significance of the observed dissimilarity functions

over a given distance interval (e.g., 21–250 m), it is important to control

for type I error that results from the b multiple tests conducted at the

different distance bins r. To correct for this effect, we used the

simulation-based version of the global envelope test presented by

Wiegand et al. (2016) that applies the standard ‘maximal absolute

difference’ (MAD) test to the transformed summary functions SESi(r)

(Myllymäki, Mrkvicka, Grabarnik, Seijo, & Hahn, 2017). We first esti-

mated the maximal absolute value Si
max of SESi(r) (over r521, . . ., 250),

where the upper global envelope zb is the fifth highest value of the

Si
max (over i51, . . ., 100), and the lower global envelope is 2zb (red

dashed lines in Figure 1b). We found that zb was c. 3.4. The null

hypothesis can be rejected with significance level of a 5 .05 if the
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observed summary functions wander at one (or more) distance bins

r outside the global envelopes.

To obtain an index Err of the overall strength of departure of a

given null community model from the observed data over a given dis-

tance interval, we estimated the average of the significant component

of SES(r) (i.e., the green area in Figure 1b) over the 21-250 m distance

interval:

errðrÞ5
0 if2zb � SESðrÞ � zb

jSESðrÞj2zb otherwise

8><
>:

Err5
1
b

Xrmax

r5rmin
errðrÞ ð2Þ

We have Err50 if the null hypothesis is accepted over the interval

(rmin, . . ., rmax), and as a rule of thumb, small departures from the null

hypothesis occur for values of Err < 1 (Wiegand et al., 2016). For the

pointwise test (i.e., b51), Err51 means that the null hypothesis is

accepted with a significance level of a 5 .05 (that results in za 5 1.96),

but would be rejected with a significance level of a 5 .003 (that results

in za52.96).

3 | RESULTS

3.1 | Observed patterns of spatial community

dissimilarity and its components

Spatial community dissimilarity mTD(r) generally increased with spatial

distance r in all eight temperate forests (Figure 2); only in the Tyson

Research Center (TRC) forest did it decrease at larger distances

(Figure 2a,e). The three plots [Fenglin (FL), Changbaishan (CBS) and

FIGURE 1 Determining significant departures form the null communities. (a) The observed summary function S0(r) (black bold line), the
mean �SðrÞ of the summary functions Si(r) of the 100 null community realizations (bold grey line), the pointwise simulation envelopes being
the 2.5th and 97.5th percentiles of the distribution of the null model simulations Si(r) (dashed black line) and the global simulation
envelopes for the 21–250 m distance interval (red dashed lines) that correct for multiple testing. (b) Same as (a), but for the summary
functions transformed to standardized effect sizes (Equation 1). Note that the resulting simulation envelopes are constants. This allows us
to define the index Err that describes the mean magnitude of departure from the null communities over the 21–250 m distance interval (the
green area)

FIGURE 2 (a-c, e-g) The observed spatial community dissimilarities [mTD(r), mRepl(r) and mNes(r)] in the eight temperate forest plots.
Large5 individuals with diameter at breast height (dbh) � 10 cm; Small5 individuals with dbh<10 cm. Total5 total spatial community
dissimilarity. (d, h) The proportion of total spatial community dissimilarities attributed to the replacement component.
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Baihe (BH)] in northern China showed only a weak increase of dissimi-

larity with distance, whereas the Donglingshan (DLS) plot in northern

China and the Harvard Forest (HF) plot in the northern U.S.A. showed

strong increases (Figure 2a,e). In general, the communities of small

trees showed stronger increases in dissimilarity with distance than the

communities of large trees.

In all eight forests, spatial community dissimilarity was primarily

related to species replacement among local assemblages distance r

apart (Figure 2d,h). For large trees, we found that between 70 and

96% of the dissimilarity (at distances > 20 m) could be attributed to

the species replacement component (Figure 2d). The largest contribu-

tion of species replacement occurred at the Smithsonian Conservation

Biology Institute (SCBI) plot (c. 94%; red line in Figure 2d) and the

lowest for the HF plot (c. 74%; blue line in Figure 2d). We observed

similar patterns for small trees at all four plots in northern China

(between 78 and 87%); however, for small trees at the plots in north-

ern U.S.A. the nestedness component became more important at

scales between 20 and 100 m (Figure 2h), and at the Wabikon (WAB)

forest it even accounted for half of the dissimilarity. The absolute

nestedness values for large trees and small trees in northern China

showed relatively little response to spatial scale (Figure 2c,g), but nest-

edness of small trees decreased at intermediate scales at the plots in

northern U.S.A. (Figure 2g).

3.2 | Relative importance of dispersal limitation,

habitat filtering and interspecific interactions

3.2.1 | The replacement component

The random placement hypothesis, which represents communities

without any spatial structure, yielded the poorest fit to the observed

replacement components for both large and small trees (Table 2B;

Supporting Information Figure S2). The index Err of departures from

the null community ranged for large trees between 3.4 and 20.3 and

for small trees between 10.4 and 52.5 (Table 2B). The mean strength

of departures Err from random placement were much larger for small

trees, especially for the FL, DLS, HF and TRC plots. Interestingly, the

index Err was correlated with the elevation range of the plots shown in

Table 1 (correlation coefficients were 0.78 for large trees and 0.77 for

small trees). The habitat filtering hypothesis, which accounted for the

effects of topographic variables, improved the fit in most cases, but still

produced highly significant departures, with Err ranging between 1.3

and 8.5 for large trees and between 4.3 and 37.2 for small trees

(Table 2B).

In most cases, the dispersal-limitation hypothesis fitted the

observed replacement component (i.e., Err50) or produced only small

departures (i.e., Err�1; Table 2B). The more complex combined habitat

and dispersal limitation hypothesis produced similar good fits for large

TABLE 2 The mean error Err (Equation 2) describing the fit of the different null community models for distances r521–250 m for large trees
and small trees (in parentheses) in the eight forests

Hypothesis

Country Plots Random placement Habitat filtering Dispersal limitation Habitat and dispersal Independent placement

A) Total dissimilarity

China FL 7.1 (63.3) 6.8 (30.3) 0.0 (1.3) 0.0 (0.0) 0.0 (0.3)
China CBS 2.9 (28.9) 0.5 (14.0) 0.0 (0.0) 0.0 (0.4) 0.0 (0.0)
China BH 12.0 (42.3) 4.4 (20.7) 0.9 (0.5) 0.0 (0.5) 0.1 (0.9)
China DLS 20.6 (67.6) 8.4 (12.7) 0.0 (0.7) 0.9 (1.5) 0.0 (0.0)
U.S.A. WAB 8.2 (48.6) 2.7 (9.0) 0.3 (0.5) 0.0 (0.0) 0.0 (0.0)
U.S.A. HF 19.0 (71.7) 7.0 (8.1) 0.0 (1.4) 0.5 (0.3) 0.0 (0.0)
U.S.A. SCBI 5.8 (35.5) 2.1 (6.9) 0.0 (0.1) 0.0 (0.4) 0.0 (0.0)
U.S.A. TRC 11.3 (63.1) 2.0 (4.5) 0.0 (2.5) 0.2 (1.8) 0.0 (0.0)

B) Replacement component

China FL 4.4 (40.4) 4.2 (37.2) 0.0 (0.6) 0.3 (0.2) 0.5 (0.0)
China CBS 3.4 (19.7) 1.7 (15.2) 0.3 (0.4) 1.0 (0.3) 0.0 (0.0)
China BH 10.4 (26.0) 5.9 (18.3) 0.4 (0.0) 3.1 (4.7) 0.9 (0.0)
China DLS 20.3 (52.5) 8.5 (14.1) 1.0 (0.4) 1.3 (1.7) 0.0 (0.0)
U.S.A. WAB 4.5 (10.4) 4.4 (14.8) 0.0 (1.4) 0.7 (3.4) 0.3 (0.0)
U.S.A. HF 9.2 (34.3) 1.3 (13.5) 0.0 (0.3) 0.2 (3.0) 0.0 (0.0)
U.S.A. SCBI 5.4 (27.3) 3.0 (4.3) 0.3 (0.0) 0.3 (0.5) 0.4 (0.0)
U.S.A. TRC 9.9 (42.7) 2.8 (7.2) 0.7 (1.3) 0.2 (3.4) 0.0 (0.0)

C) Nestedness component

China FL 0.0 (9.3) 0.0 (3.1) 0.0 (0.0) 0.7 (0.0) 0.1 (0.0)
China CBS 0.4 (2.0) 1.0 (1.5) 0.6 (0.1) 1.6 (0.0) 0.3 (0.0)
China BH 0.1 (3.8) 0.8 (1.0) 0.4 (0.3) 3.7 (4.2) 0.4 (0.0)
China DLS 1.7 (11.7) 1.5 (1.9) 0.8 (0.0) 1.2 (1.4) 0.6 (0.0)
U.S.A. WAB 0.0 (34.2) 1.4 (0.0) 0.9 (0.8) 1.5 (0.8) 0.8 (0.0)
U.S.A. HF 5.2 (25.5) 6.3 (2.1) 0.7 (2.9) 4.1 (3.5) 0.0 (0.0)
U.S.A. SCBI 1.5 (4.8) 1.3 (0.0) 0.7 (0.1) 1.3 (0.5) 0.4 (0.0)
U.S.A. TRC 0.9 (13.6) 0.6 (1.2) 0.8 (0.7) 0.7 (3.2) 0.2 (0.0)

Note. For Err50, the null hypothesis is accepted with significance level of .05 over the entire distance interval; weak departures from the null
hypothesis occur for values of Err< 1.
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trees (except the BH plot), but for smaller trees in the BH, WAB, HF

and TRC plots larger departures (with Err>2). The independent-

placement hypotheses fitted the observed replacement

component in all eight plots (smaller departures for large trees in BH

and SCBI, otherwise Err50) for both the large and small tree commun-

ities (Table 2B).

3.2.2 | The nestedness component

The nestedness component of community dissimilarity was driven by

different mechanisms than the replacement component. For large

trees, we found that random placement produced surprisingly good

approximations of the nestedness component (with Err<1.7), except

at the HF forest, with Err55.2, which showed the largest

nestedness component for large trees among all eight forests

(Table 2C). Habitat filtering produced good fits, similar to random

placement (Supporting Information Figure S3). The dispersal-limitation

hypothesis also produced only weak departures (i.e., Err�1) for the HF

forest.

For small trees, in contrast, random placement did not fit the

observed nestedness components and produced large departures for

some forests, especially for the WAB (Err534.2) and HF (Err525.5)

forests. Habitat filtering improved the fit substantially in all cases,

including the WAB and SCBI forests, yielding otherwise only weak

departures (Table 2C). Dispersal limitation produced only weak depar-

tures, except for the HF plot (Table 2C). The independent-placement

hypothesis fitted the data well in all cases.

3.2.3 | Total dissimilarity

In general, the null model analyses yielded similar results for total dis-

similarity and the replacement component (cf. Table 2A,B; Supporting

Information Figure S1). Here, the dispersal-limitation hypothesis and

the combined habitat and dispersal hypothesis produced similar fits,

with Err<1, in most cases. Notably, the combined habitat and dispersal

hypothesis produced better fits for total dissimilarity than its replace-

ment component (Table 2A).

4 | DISCUSSION

In this study, we evaluated the relative importance of two complemen-

tary processes (species replacement and nestedness) underlying tree

community dissimilarity measures (Baselga, 2010; Legendre, 2014;

Podani & Schmera, 2011) in eight fully mapped ForestGEO plots in the

U.S.A. and China (Anderson-Teixeira et al., 2015). We used spatial point

pattern analysis and spatially explicit null models (Wang et al., 2015;

Wiegand & Moloney, 2014; Wiegand et al., 2017) to analyse

mechanisms underlying observed patterns in the two dissimilarity

components. Our study yielded three key findings. First, total spatial

community dissimilarity was primarily driven by species replacement

among local assemblages. The species-replacement components and

total dissimilarity generally increased with spatial distances, whereas

the species-nestedness component showed little response to spatial

scale. Second, the dispersal-limitation hypothesis provided the best

explanation for species replacement and total dissimilarity, whereas the

association of species to topographic variables (i.e., the habitat-filtering

hypothesis) provided mostly poor fits. However, nestedness of large

trees was also well fitted by the random placement and habitat filtering

hypotheses, and for small trees nestedness was also well fitted by the

habitat filtering hypothesis. Third, we found that the nestedness com-

ponents of the plots in the northern U.S.A. varied in general more than

that in northern China. This was especially true for small trees, where

nestedness values of the northern U.S.A. plots were substantially larger

than those in northern China. Overall, our results support the hypothe-

sis that the two components of spatial community dissimilarity are

driven by different mechanisms of community assembly.

4.1 | The relative importance of the replacement and

nestedness components

In all eight forest plots, we found that patterns of community dissimi-

larity primarily reflected species replacement among local commun-

ities. Overall, we obtained similar results from forest plots in northern

China and northern U.S.A. However, the contributions of the nested-

ness components to total dissimilarities were higher in northern U.S.

A., especially at distances < 100 m. The generally low contribution of

nestedness to overall dissimilarity of local species assemblages can be

explained by the relatively small local variation in species richness

among local communities (i.e., 20 m 3 20 m subplots). We found that

the high nestedness component of small trees at the WAB and HF

forests coincided with a high local variation in species richness

(coefficient of variation50.54 and 0.62) and number of individuals

(coefficient of variation50.95 and 1.21), a pattern inevitably leading

to ‘diversity hotspots’ (Supporting Information Table S1). This obser-

vation parallels the high degree of nestedness found within island

archipelagos (Lomolino, 1996; Si, Baselga, Ding, & Machado, 2015),

where selective immigration and extinction lead to ordered patterns

of species assemblages. In particular, depauperate islands tend to be

occupied by predictable subsets of species occurring on species-rich

islands. In contrast, smaller variation in local richness, as observed for

large trees and small trees at the plots in northern China, leaves little

room for typical nestedness configurations with strong spatial

richness gradients or ‘hotspots’ of local species richness (or tree

abundance).

The relatively large nestedness component for small trees in the

northern U.S.A. forests is probably related to their overall lower species

richness that scales down to the low mean species richness of small

trees at the subplot scale (ranging between 4.9 and 6.9 in northern U.S.

A. and between 7.6 and 13.7 in northern China; Supporting Information

Table S1). Interestingly, all plots showed for small trees a similar SD in

local species richness (c. 2.7; Supporting Information Table S1), which

then results in higher local variation in richness of the North American

plots (Supporting Information Table S1). For example, the WAB and HF

forest plots, with the high nestedness values for small trees, both show

patchy local hotspots of high density (and richness) of small trees. The

generation of local hotspots of species richness at these two plots was

probably enhanced by localized logging during the 1900s at WAB and

following a hurricane of 1938 at HF.
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4.2 | Ecological mechanisms underlying replacement

and nestedness

Habitat filtering and dispersal limitation have been regarded as two

major mechanisms of community assembly, but their relative roles

across forests remains elusive. Our results showed consistently for all

forests that the dispersal-limitation hypothesis (i.e., maintaining the

observed intraspecific aggregation) contributed more to the average

total compositional dissimilarity between local communities than habi-

tat filtering. This result is consistent with previous studies in tropical

(Morlon et al., 2008) and temperate forests (Wang et al., 2011).

Moreover, this general finding challenges the idea that dispersal assem-

bly may be relatively more important than niche assembly in high-

diversity (e.g., tropical) compared with low-diversity (e.g., temperate)

forest communities (Hubbell, 2001; Myers et al., 2013); our results

suggest that it is important universally.

Our study advances previous work on the processes governing

distance decay of similarity at local scales (e.g., Morlon et al., 2008;

Wang et al., 2011, 2015) by separate analysis of the species replace-

ment and nestedness components of spatial community dissimilarity.

We found that the species replacement component was able to

discriminate clearly among competing hypotheses. Our analysis led to

acceptance of the dispersal limitation hypotheses as the simplest

hypotheses that fitted the observations reasonably well, clearly reject-

ing the random placement and habitat filtering hypotheses. However,

the nestedness component was influenced by different processes. The

random-placement hypothesis explained the low species-nestedness

component for large trees well (except for the HF forest, which

showed the largest nestedness component for large trees), suggesting

that spatial distributions of large trees may be strongly influenced by

stochastic community assembly resulting from ecological drift (Hubbell,

2001). In contrast, the habitat-filtering hypothesis provided a better

explanation for the larger species-nestedness components of small

trees (especially at the WAB forest), suggesting a stronger influence of

deterministic community assembly at earlier life stages or for under-

storey species relative to canopy species.

The inability of the habitat-filtering models to explain observed

spatial community dissimilarities can be explained partly by effects of

from extinction–recolonization dynamics (where not all species occupy

all suitable areas) or from the omission of some important environmen-

tal variables. For instance, soil nutrients such as nitrogen, phosphorus

and aluminum have been shown to influence local spatial distributions

of species in tropical (e.g., Condit, Engelbrecht, Pino, P�erez, & Turner,

2013; John et al., 2007) and temperate (LaManna, Walton, Turner,

Myers, & Rejmanek, 2016; Spasojevic, Turner, Myers, & Jones, 2016)

forests. Also, factors such as land-use history (e.g., grazing, hunting and

logging) may have affected the spatial pattern of species, especially at

the WAB and SCBI plots, where historical logging is known to have

occurred. Given a lack of more detailed environmental data, we leave

this as an issue for forthcoming studies.

In addition, we found that patterns of species nestedness and

replacement were influenced by variation in local species richness and

densities of individuals at the 20 m 3 20 m subplot scale. At the local

scales analysed here, we find that the replacement component

accounts for spatial community dissimilarity caused by ‘homogeneous’

species clustering as described by the dispersal limitation hypothesis

(i.e., species clusters of different species are independent and can

appear everywhere in the plot with the same probability). This is also

the spatial pattern expected from neutral theory (Hubbell, 2001). In

contrast, the spatial nestedness component of spatial dissimilarity can

only become more important if the community shows high heterogene-

ity in local species richness and/or local individual numbers. Otherwise,

in more homogeneous communities, nestedness remains small and

arises from stochasticity as captured by random placement.

4.3 | Effects of interspecific species interactions

Surprisingly, our results suggest that small-scale species interactions

have a relatively weak influence on overall spatial patterns of commu-

nity dissimilarity in the temperate forests analysed. The independent-

placement hypothesis that distributes individuals of a species locally

irrespective of individuals of other species (McGill, 2010; Wiegand

et al., 2012) generated excellent approximations of spatial community

dissimilarity, species replacement and nestedness in all forests at dis-

tances of 21–250 m (Table 2). This result is inconsistent with previous

studies that have provided evidence for the importance of pairwise

interspecific species interactions, especially for tree species in temper-

ate forests (e.g., Canham et al., 2006; Wang et al., 2010). For instance,

Wang et al. (2010) found that c. 30% of all pairs of large tree species

showed evidence of interspecific interactions at the CBS plot. Possible

explanations for this finding are that the effects of significant negative

pairwise interspecific interactions on community level patterns might

be ‘diluted’ by the non-significant interactions (e.g., the 60% found by

Wang et al., 2010) or by stochasticity (Wang et al., 2016), or the effect

of positive and negative pairwise interspecific interactions on commu-

nity level patterns might cancel one another. As a consequence,

significant pairwise interactions might leave no strong signal in

community-level patterns such as the species–area relationship and

spatial community dissimilarity (Wang et al., 2011).

An alternative but complementary explanation for our reported

patterns is that the detectable small-scale interactions in some of the

species pairs translated only into subtle small-scale patterns that are

not detectable with the relatively coarse 20 m spatial resolution used

here. For example, Wang et al. (2015) detected at scales < 15 m subtle

effects of interspecific interactions in patterns of phylogenetic and

functional beta diversity (their fig. D6 in appendix D) quantified by

high-resolution point pattern summary functions not based on subplot

counting. Moreover, weak interspecific interactions could result from a

relatively stronger influence of intraspecific interactions, such as intra-

specific competition for limiting resources or negative density depend-

ence caused by specialized natural enemies (LaManna et al., 2016).

4.4 | Conclusions

Analyzing patterns of spatial community dissimilarity, species replace-

ment and species nestedness have substantially advanced our
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understanding of the processes controlling macro-scale biodiversity pat-

terns, but the ways in which different community assembly processes

create these patterns at local scales remain largely unexplored. Across

eight temperate forests in northern China and northern U.S.A., we show

that spatial community dissimilarity is primarily explained by species

replacement among local assemblages. Moreover, we show that differ-

ent assembly processes influence the species replacement and species

nestedness components of community dissimilarity. Species replacement

of both large and small trees was primarily explained by dispersal limita-

tion in all forests, whereas small nestedness was primarily associated

with stochastic processes (random spatial distributions of large trees),

and larger nestedness (of small trees) was primarily associated with

larger heterogeneous variability in local species richness. In contrast,

interspecific species interactions appeared to have no detectable influ-

ence on spatial community dissimilarity and its replacement and nested-

ness components across all forests. Collectively, these results indicate

that the species replacement and nestedness components of community

patterns provide key insights into the relative importance of different

ecological processes underlying community assembly and local

biodiversity patterns; these insights could easily be overlooked in studies

that focus solely on patterns of community dissimilarity. Thus, the novel

use of replacement and nestedness measures in point pattern analysis of

large, fully mapped forest dynamics plots is a promising approach to

assess local-scale biodiversity patterns and to explore their causes.
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